11679 HAYDEN STREET
HIRAM, OHIO 44234

O0SI MODEL 300 MANUAL

VERSION II




0S1 MODEL 300 COMPUTER TRAINER

THE MODEL 300 IS A COMPLETELY ASSEMBLED AND TESTED, READY TO USE,
COMPUTER DESIGNED TO "BOOTSTRAP" THE STUDENT, HOBBYIST, AND ENGINEER
INTO THE MICROPROCESSOR WORLD. THE UNIT IS BUILT AROUND THE MOS 6502
8 BIT MICROPROCESSOR AND USES A 128 WORD RAM. ITS CONTROLS INCLUDE
8 DATA SWITCHES, 7 ADDRESS SWITCHES, MEMORY LOAD, PROCESSOR RESET,
PROCESSOR RUN, INTERRUPT, AND MEMORY WRITE PROTECT. THE DISPLAYS
INDICATE DATA, ADDRESS, AND PROGRAM EXECUTION. -TWO INPUT LINES AND
ONE OUTPUT LATCH ARE PROVIDED FOR I/0 PROGRAMMING. THE 'MODEL 300
COMES COMPLETE WITH A LABORATORY MANUAL WITH 20 EXPERIMENTS STARTING
WITH SIMPLY LOADING AND READING MEMORY AND FINISHING WITH QUTPUTING
TO A TELETYPE.

MODEL 300 COMPUTER TRAINER COMPLETELY ASSEMBLED WITH LAB MANUAL
(REQUIRES +5VDC AT 500MA). .. vvvvvsevneennnnnnnns $ 99,00

THE 6000 SERIES COMPUTER FAMILY  (SUPERBOARD)

A COMPLETE MINICOMPUTER PC BOARD (DOUBLE SIDED EPOXY) WHICH
ACCEPTS ANY 6000 SERIES PROCESSOR, SYSTEM CLOCK, 2- 1702
TYPE ROMS, 1K X 8 RAM (2102 TYPE), 1 PIA, 1ACIA, CURRENT LOOP
AND PARALLEL INTERFACES AND HAS BUS EXPANSION CAPABILITIES.
EACH SUPERBOARD COMES COMPLETE WITH DOCUMENTATION.

BAREAT IR conovcimesmmmmemsssames omss ;
MICROPROCESSOR AND SUPERBOARD ......vveeevvsrneennnnns. :
MICROPROCESSOR AND SUPERBOARD .. ...wwvvnvrnnnnnnnn.. f
MICROPROCESSOR AND SUPERBOARD FEATURES

INTERNAL CLOCK  tvveeeeeeet e e e e e e 4.00

ALSO AVAILABLE :
ALL SYSTEM SUPPORT PARTS

RAM - ROM MEMORY EXPANDER BOARD

SUPERI/0 BOARD CONTAINING CASSETTE INTERFACE; X, Y DISPLAY
AND A/D CONVERTER.

VIDED GRAPHIC BOARD

MING \:
FIRMWARE BASIC BOARD (USES ROM AND CALCULATOR CHIP)
CALL (216) 653-6484 OR WRITE TODAY FOR OUR COMPLETE INFORMATION PACKAGE.

OHIO SCIENTIFIC INSTRUMENTS

P.O. BOX 374, HUDSON, OHIO 44236




MODEL 300 COMPUTER TRAINER
A COMPLETE, SELF CONTAINED COMPUTER ON A SINGLE PC BOARD

The Model 300 is a completely assembled and tested, ready to use, computer
designed to "bootstrap" the student, hobbyist, and engineer into the micro-
computer world. The unit comes complete with a 20 experiment 1ab manual written
for use in a college physics, electronics, or computer course. Since the manual
assumes no previous knowledge of computers or digital electronics, it is also
ideal for self-teaching. The first experiment is simply loading and reading
memory. The last experiment is interfacing the computer to a teletype.

The unit has 128 words of memory (8 bits wide) and is based on the MOS
Technology 6502 microprocessor which has 55 basic instructions with over 145
variations. The processor does binary, twos complement, and binary coded
decimal arithmetic. It also features interrupt capability and has 13 memory
addressing modes. The lab manual covers virtually all instruction types and
programming procedures.

n s I OHIO SCIENTIFIC INSTRUMENTS

11679 HAYDEN STREET, HIRAM, OHIO 44234




The unit also has a sync line for easy scoping of circuit points. Two
input lines and one output latch are provided for 1/0 programming. The
output latch can be connected to an audio amplifier to produce tones and
even "tunes."

SPECIFICATIONS

CONTROLS: 8 Data Switches for loading programs and data.
7 Address Switches for addressing 128 words of memory and examining
memory contents.
Memory Load deposits data switches at memory location specified by
address switches when momentarily actuated with computer halted.
Processor Reset forces reset of computer and loads reset vector into
program counter.
Processor Run runs and halts computer.
Tnterrupt forces a non-maskable interrupt when momentarily actuated. /
Memory Erite Protect converts the memory to a read only memory (ROM)
when actuated.

DISPLAYS: 8 Data LEDs-display contents of data bus.
7 Address LEDs-display current memory address.
Run- indicates execution of a program.

INPUTS: ngg maskable interrupt request, low true, TTL compatable.
S0- Set Overflow bit, TTL compatable.

OUTPUT: one TTL compatable latch set high by addressing page 2 and set low
by addressing page 1.

SYNC: TTL level for triggering a standard scope with op code execution.

PERFORMANCE: The 6502 is capable of operating at 500ns. cycle time (1.5usec.
Jump Absolute). The Model 300 runs at approximately 2usec. sycle time
but can be vared by the user.

MECHANICAL: 8" X 10" overall. G-10 epoxy board using standard
industrial components.

POWER REQUIREMENTS: 5VDC at 500ma maximum. 350ma typical. The unit will
operate for approximately 20 hours from 4 alkaline "D" cells.

GUARANTEE: 90 days materials and workmanship.
DELIVERY: 30 to 60 days.

PRICES (F. 0. B. HIRAM, OHIO)
MODEL 300 COMPUTER TRAINER COMPLETELY ASSEMBLED AND TESTED WITH
LAB MANUAL (requires +5VDC at 500ma) ..... TSN L $ 99.00
110VAC Calculator Type Power Supply ADD............... $ 10.00
MODEL 305 SAME AS MODEL 300 BUT LESS 6502 PROCESSOR... $ 74.00
MODEL 315 PLAN....ccvevencncnnrcosans See Catalog for Details.



CONTENTS

-
.

Binary, Decimal, and Hexadecimal Numbers

Reading and Writing in RAM

Running a Program on the Model 300 Computer Trainer
Binary Addition

Adding on the Computer

A s W™

Conditional Branching

7. Adding Signed Numbers on the Computer

(=]

. Subtraction

9. Binary Coded Decimal Arithmetic
10. Logical Operations

11. Double Precision Arithmetic

12. Stack Processing

13. Subroutines

14. Flowcharting

15. Multiplying Two Four Bit Binary Numbers
16. Compare

17. Addressing Modes

18. Interrupts

19. I/0 Programming

20. Outputing to a Teletype

Appendix A 650X Specifications Sheets



INOAYT Y3INIVYL ¥3ILNdWOI 00€ T3IA0W

S3IHILIMS
SYOLYIIANI
sS¥3ding
ss3yaay

WOd

TYWHON

[WN

IWN
TYWHON avol
Avl—-lv
avol
1353y TVIWION
T.—Inv
154
NNY 1VH
| ¥oLvo1aONI
N o)
NMY

eWNOS 3° 5+—>® ¥IM04d

(NNOY9
-

INAS
L

L39vd 2 39vd
1nd1no

@€ aNNoYY

WOY

TVWHON

SS3yaay

Wvd
8 X 82l
0189

SIHILINS
SYOLVIIONI
sS¥344ng
viva

2089




Power Connections

The Model 300 Computer Trainer requires +5volts at 500ma maximum,
350ma typical. The unit can be powered from the available battery eliminator
accesory , any TTL logic compatable power supply or batteries. The Computer
Trainer will work with supply voltages from 6 to 4 volts. Alkaline or
Ni-Cad batteries should be used since conventional batteries will last only
minutes. The following table gives approximate battery life for fresh
alkaline batteries.

4 "D" Cells 16 to 20 hours
4 "C" Cells 4 to 6 hours

Care should be taken to connect the positive lead to the + or red side and
negative to the - or black side of the power connections above the run

switch and 1ight. The power source should be stable since power "outages" will
erase memory and the supply should not produce voltage spikes on turn on

or off. In battery operated systems, the battery should be replaced when

the run light begins to flicker. This condition occurs at about 4volts.

Guarantee

e Model 300 Computer Trainer is not a consumer product. It is an
unprotected P.C. Board and should be treated as such. It can be damaged by
improper power supply connections, overvoltages, malfunctioning Input/Output
devices or test equipment connected to it, and careless handling.

The unit is mechanically fragile and should never be dropped or have
books or other objects piled on it. Electrically it can be damaged by
shorting circuit lines together.

OSI guarontees the Model 300 Computer Trainer for 90 days from the date
of delivery against defects in materials and workmanship. This guarantee
does not cover malfunctions induced by improper mechanical or electrical
handling. Malfunctioning units should be sent to OSI with postage prepaid.
Out of warranty sevice charges will be quoted for approval before
repairs are made.

Scopin

The Model 300 Computer Trainer has pins for scoping the address and data
lines and a sync output. Always connect test equipment and I/0 device
grounds before signal lines to avoid glitches in running programs. The
sync line goes low every time an instruction is fetched from memory
providing a trigger signal for repetitive programs such as the simple jump
to jump program, Times 10 scope probes should be used when scoping circuit
points since the address and data buses are somewhat susceptéble to
stray capacitance.

Manual Updates
If you did not purchase the Computer Trainer directly from 0SI, please
send us your name and address so that you will receive manual updates.




BINARY, DECIMAL, AND HEXADECIMAL NUMBERS

Introduction:
Xpressing numbers in binary, decimal, and hexsdecimal form is discussed.

Discussion:
e number system with which most persons are familiar is base 10.

In base 10, numbers are expressed using ten digits, 0-9. When dealing with
microprocessors, it is essential to also be acquainted with base 2, or binary
numbers and with base 16, or hexadecimal numbers. To help simplify the process
of converting numbers from base 10 to base 2 and base 16, a conversion
table has been provided on the following page.

When using base 10, it is possible to write the number 7 as 0007 where
the first three digits indicate that there are zero thousands, zero
hundreds, and zero tens while showing that there are sgven onei. This_can
also_be thought of as being equal to the following: 10°X0 + 104X0 + 101X0
+ 1097, (Mathematical convention defines any number raised to the 0 power
as being equal to 1) Each digit's location or “place" in a binary number differs
from that of a base 10 or decimal number in that it represents a power of
two instead of a power of ten. Rsmemberin? thig, the binary number 0111
can also be expressed as 2°X0 + 2¢X1 + 2'X1 + 2YX1. 7o change the base 2 number
number 301] 1n§o a bafe 10 Bumber. first write the number in exponential
form. 29X1 + 2°X0 + 2'X1 +20%1. This is equal to 8 + 0 +2 + 1 or 11.

Numbers can also be converted from base 10 into base 2. In order to do
this efficiently, one needs to know the powers of two. It is advised that
they he memorized! A partial 17st is given below.

20 =1 25 = 64

21 =2 27 = 128

22 = 4 28 = 256

23 =8 29 = 512

2% = 16 210 = 1,024
2% = 32 211 = 2,048

The base 10 number 255 is converted to binary form to illustrate
the procedure given below.
1. Find the largest power of two which is contained in the number. In
this case, 128 is the largest.
2. Find the difference between the numbers being converted and the
number found above. 255 - 128 = 127 o
3. Express the number as the sum of the largest power of two coytained within
the number and the difference between it and the original number. 2/ + 127

[-A



Table 1. A Conversion Table for Binary Numbers, Hexadecimal Numbers, and
Decimal Numbers.

o
]
O
pors
3
o
—

Hexddecimal Binary
0 0000
000
0010
001
0100
0101
0110
01
1000
1001
1010
oM
1100
1101
1110
IRRR

DO HBWN—O

—
o

TMMOOPIPIPOUONOSWMN —
Py
—_

S R —
e wMn

4. Find the next largest power of two going into the difference
found above. Repeat the procedure above until the entire number is expressed
as sums of powers of two. The numbers should be expressed so that the
exponents appear in descending order.

27 + 26 + 63

o7 4+ 26 425 &+ 31
DU LI U L |

o7 + 26 425 + 28 423 47

3 <
LI AT T LS

27 + 26 + 25 + 24 4 23+ 22 + 2! +1
o7 + 26 425+ 4 4234 22 421 4+ 20

5. The number can now be easily transformed into binary format. Recall
that each digit of a binary number erresents a power of two. Hence, the
least iignificant digit represencts 2%, the next most significant 2', then 22,
then 2%, and so on. In the number above, each power of two reprssents one
digit. The exponent represetns the place of the digit. Since 2° appears
above, the least significant digit of the binary number is 1. If 2Y did not
appear above when the number was expressed in terms of powers of two,

ghe least significant digit would be 0. 255 expressed in binary form
s 11171 1111,



Another example, converting 20 to binary form, is given below.

2

22 + 4

24+22
Since no 20 appears above, the least signifgcant digit is 0. Since no 2!
appears, the nsxt digit is also 0. Since 2° appears, the fo]lgwing digit
is 1. Since 27 does not appear, the next digit is 0. Since 2% appears, the
next digit is 1. The binary form of 20, then, is 10100, or 0001 0100.

Base 16 or hexidecimal numbers operate using 16 digits. They are 0, 1,
2,3,4,5,6,7,8, 9A,B,C, D, E, and F. Instead of using two digits
after reaching 9 as is done in base 10, hexadecimal numbers use the first six
letters of the alphabet and then begin to use two digits. This can be seen
by examining the base conversion table (Table 1.). For most microprocessor
applications, one will need to know how to change hexadecimal numbers into
binary numbers and vice versa, but will rarely need to change hexadecimal
numbers to base 10 or vice versa. Table 1 shows the basic pattern that is
used to change binary numbers into hexadecimal. It also gives the decimal
equivalent for each number. It is highly advantageous to memorize this table.

When converting a binary number into hexadecimal, begin by starting with
the right-hand most digit and marking the digits off into blocks of four
digits each. For example, the binary number 1100111101 would be marked off as
11'0011°1101. Next, add as many zeros as are needed to the left-hand end of
the number so that it contains four binary digits in the last section. The
above number is then written as 0011'0011'1101. To begin converting the
binary number to hexddecimal (hex), find the hex number in the chart that
corresponds to the last four digits of the binary number. 1101 in base 2
equals D in hex. Continue this process by finding the hex equivalents for
each of the sets of four binary digits. 0011 equals 3 in hex. 0011 equals 3
in hex. The hex equivalent of 0011'0011'1101" is, therefore, 33D. Each hex
digit has simply replaced one set of four binary digits.

Converting the hex numbers into binary format is also quite simple.
Merely convert each digit into its binary code. The hex number A47 is easily
changed. 7 hex equals 0111 binary. 4 hex is the same as 0100 in binary and
A in hex equals 1010 in binary code. A47, when changed to binary notation,
is 101001000111 or 101001000111 (Note that the binary number is much
easier to read when every four digits are set apart. Therefore, in this manual,
binary numbers will have a space between every four digits, i.e.,

1010 0100 0111.).



READING AND WRITING IN RAM

Introduction:
Information is stored and retrieved from RAM.

Discussion:
e 300 series Computer Trainer uses a type of computer memory refered
to as Random Access Memory (RAM). With RAM, the user can both read and
retrieve information from memory and write or store information in memory. This
is different from Read Only Memory (ROM) which is pre-programmed so that
the user can only use the information which is already stored.

Before reading and writing in memory, one needs to know something
about binary numbers and organization of RAM and the computer.

Modern digital circuitry is capable of determining only if a line is "high"
or "low", that is, "on" or "off." To accomodate this, numbers can be
translated into binary code which is represented using only ones and zeros.
Ones are used to represent on states or logical highs while zeros are used
to symbolize logical lows or off states. The chart in the previous section
(Table 1.) shows the base ten or decimal number and its binary equivalent
for the numbers from O to 15. The binary numbers have all been written
with four digits. When the digits at the left-hand end are zero
they are acting as placeholders. These placeholders will prove to be
essential when operating the Computer Trainer. Each on or off symbol repre-
sents one bit. Therefore, each of the numbers on the chart is represented
as a four bit binary number.

The memory is organized in pages, each page being a unit of 256 words.
Each word is essentially an eight bit binary number or byte. Each byte or
word of memory is given a specific binary address or location. The first
location is location 0000 (0 in decimal). The second is 0001 (1 in decimal),
the third is 0010 (2 in decimal) and so on.

Along the bottom of the front panel of the computer, there are a series
of switches. They are arranged so that the eight switches on the left are
data switches while the seven switches on the right are address switches.

When a switch is up (towards the red lights (LEDs)), it indicates a logical
high. A logical low is indicated when a switch is down. The indicator lights
above the switches indicate a logical high when 1it and a Togical low

when not illuminated.

Set all of the switches as follows:

Run to the left

RST to the left

Load to the right

NMI to the left

ROM to the left

A1l data and address switches down, i.e., away from the LED indicators.
Note that the run switch must be to the left for the load, the data, and the
address switches to operate.

Plug the computer in. The LEDs above the eight switches on the right-
hand side indicate the memory location which is being addressed. They should
indicate 000 0000, the first memory location. The lights on the left-hand
side of the board labckd "data" display the contents of the address
selected by the switches on the right-hand side of the board.

Since the user hasn't stored anything in memory at this location, there is
no way of predicting what it contains. Change the address switches so that



they indicate 0000 0001, the second location in memory. The LEDs to the
right are now displaying the contents of the second memory location. It is
possible to continue changing the address switches to see what is contained
in other memory locations. Jot down the memory locations and their contents
in a form similar to the following:

Data Address

000 0000
000 0001
000 0010
000 00N
000 0101

Unplug the computer. Plug it in again. Compare the contents of specific
memory locations with those jotted down. They are probably the same. When
each memory location looses power completely and then receives it again,
it will tend to have the same contents that it had when it was initially
powered up (before anything was ever stored in it). These contents vary
from one memory chip to another, but tend to be constant for each chip.

In addition to looking at or reading the contents of memory locations,
it is possible to write or place information in memory. Set the address
switches to 000 0000. The contents of location 000 0000 are now displayed.
Set the data switches (the switches on the left-hand side) with the contents
desired for location 000 0000, say 0000 1111. Now push the “Load" switch to
the left and then back to the right. This will load the contents of the
data switches into the memory location indicated by the address switches.
Always return the load switch to the right after each load operation. If the
loaded pattern, when displayed, does not duplicate the data switch settings,
try moving the load switch back and forth once or twice. Occasionally, the
load switch may "glitch} that is, may introduce a false pulse so that it is
a good practice to always check the data switch positions against the data
light readout.

Try loading other memory locations with data. A fairly simple data choice
is to load each location with the number that is the same as its address. Go
through and read the memory locations that have just been written in.

Information can be stored in the form of a memory look-up table. For
example, a binary addition table such as the one below can be stored in memory.

Push all the address and data switches to the "low" position.Consider the
two right-hand most address switches to represent one binary number. The two
address switches adjacent to the first switches represent 2 second binary
number. The sum of the two numbers will be placed in memory as data.

DATA MEMORY LOCATION
0000 0000 000 0000
0000 0001 000 0001
0000 0010 000 0010
0000 0011 000 0011
0000 0001 000 0100
0000 0010 000 0101
0000 0011 000 0110
0000 0100 000 0111
0000 0010 000 1000
0000 0011 000 1001
0000 0100 000 1010
0000 0101 000 1011
0000 0011 000 1100
0000 0100 000 1101
0000 0101 000 1110
0000 0110 000 1IM



Load memory with the table on theprecedind page. "Read" memory to check
and be sure that the table is properly loaded and is ready for use.

The look-up table which has just been loaded into memory can be used
to perform some simple binary addition. For example, say one wishes to
find the sum of 01 and 11. To do this, treat the two least significant
bits of the address switches as the first number and the next two switches
as the value for the second number which is to be added. In other words,
set the memory address switches to 000 0100. The LEDs above the data
switches will indicate the results; 0000 0100.

For a second example, the sum of 10 and 10 can be found. The address
switches are set to 000 1010. The LEDs above the data switches should then
indicate the results which are 0100.

In actual computer programming, the look-up table is a valuable technique
for storing information in as little space as possible and is used frequently
for a number of applications.

The procedure for reading and writing in RAM has just been discussed.
This procedure is an essential part of using the Model 300 Computer Trainer.

R BB LT o

WHEN RET



RUNNING A PROGRAM ON THE MODEL 300 COMPUTER TRAINER

Introduction:
e procedure for running a program on the Model 300 Computer Trainer
is described.

Discussion:

n order for the computer to perform a task such as adding several
numbers, it must be instructed to perform a sequence of events which will
lead to the desired results. The instructions are refered to as a program.

The program is stored in memory prior to execution, (This procedure is
described in the previous section.{.

One of the shortest and simplest programs which can be written for a
computer is a jump program which jumps to itself. When executing such a
program, the computer is given a jump or "go to" command which instructs
the machine to begin executing the instruction which is located at the
memory Tocation specified by the jump command.

This can be accomplished by the Jump Absolute command. The Operation
Code (op code) or actual machine instruction for this instruction is 4C.
As is the case with any instruction in the absolute mode, the instruction
uses three bytes or three consecutively addressed memory locations. The first
word or byte consists of the op code while the second word is the low
portion of the memory address. The third word is the age or high portion
of the memory address. Assume that a jump command (4C) has been placed
at location 01 on page 00. In order to have the jump jump to itself, the
second byte of the instruction is 01 while the third byte is 00.(The actual
code placed in the machine is translated from hex into binary.)
Note that on the Model 300 Computer Trainer, only page 00 exists.

Load the following program into memory:

Op Code Location Mnemonic Note

4C 01 JMP Oper Jump Instruction

01 02 Data Memory location being jumped to
00 03 Data Page being jumped to

To run the program, the following steps are taken. The user must let
the computer "know" at what memory Tocation the program begins. When the
computer prepares to execute a program, it always begins running the program
by starting at the memory location specified by the '¢5€T  yector. This
information is contained in memory locations 7C and 70. Before running the
program, the user must place the low order memory location, the location within
a page, for the begining of the program at location 7C. This is done by
Toading memory location 7C with the memory location at which the program
will begin. The high order or page is loaded into memory location 7D.
(Note: In systems with the full 65K memory, the réset  yector is located at
memory locations FFFC and FFFD.) Next, the reset switch is pushed high
(to the right). This causes the program counter to be initialized or set
to the location specified by the restart vector. The program counter is a
16 bit register which contains the memory address for the next instruction
or command. Following this, the run switch is pushed high (to the right).
Then, the reset line is set low (pushed left) so that the computer will run.
While the program is being executed, the pattern formed by the LEDs
should be noted. The set of LEDs on the left-hand side indicates the op
code of the instruction which is being executed. If more than one instruction is




being performed, or if the instruction is more than one byte long, the data
patterns will be superimposed upon each other. They should be 1ighted as in
the diagram below (@ indicates "1ight on").

0000 00O0F 000 0000
The address 1ights indicate the memory locations at which the microprocessor
is obtaining instructions. While it appears that the microprocessor is
always addressing location 03, this is not actually the case. The LEDs
are being turned on and off so rapidly that they appear to be on constantly!

To halt the processor, set the reset low or to the right. Then set the
run switch to the low position (to the left).

Before proaeding with more complicated programs, write and execute
several more jump absolute programs starting at different memory locations.
It is crucial that one become totally familiar with the procedure for loading
and running a program before going on to other experiments.

Another sample of a jump program is given below. Load it and run it

before writing addition 1 programs.

Op Code Location Mnemonic Note

4C 04 JMP Oper Jump instruction

04 05 Data Memory locaticn being jumped to
00 06 Data Page being jumped to

Before running the program, be sure to load the reset vector with 04
and 00 to indicate the location and page on which the program begins!
While the program is running, the LEDs should be lighted as in the diagram below.
0000 #0000 000 Do
Notice that the address LEDs which are 1it are not all equally bright.
This is because the machine is addressing locations which have the same
LED as an indicator while each of the other LEDs is only 1it during a
portion of the commands. Since the Model 300 has only 128 bytes of memory,
the page portion of each address does not affect program operation.
However, the proper procedures should be used with respect to page addressing
so that difficulty will not be encountered in programming on larger systems.

3-8



BINARY ADDITION

Introduction:
Binary addition is examined.

Discussion:

The 6502 microprocessor is capable of performing binary addition.
Before programming the computer to perform this operation, it is necessary
to know how to do it.

The addition of two binary numbers is quite simple. There are
essentially four possible additions with three possible results. The
table below shows that in binary addition 0 + 0 = 0,1+0=1,0+1=1,
and 1 + 1 = 10. When two binary numbers, each having one digit are
added, the procedure followed is the same as that for base ten numbers.

Table 1. Binary Addition Table

One begins by adding the two right-hand most digits. If the addition results
in a two digit binary number, the least significant digit is written as

the least significant digit of the sum and the most significant digit is
carried. An example is given below.

1 101
1 101

D = it

1
1
This procedure is followed for each of the columns of digits, as when
working with base 10. Therefore:

—
(=N =
— o b

Ol =t

1

1

0
The sum of 10111 and 10101 is 101100.

Since binary numbers aren't always positive, a technique is needed for
adding signednumbers. This can be accomplished by expressing numbers in

twos complément form before performing the addition. The procedure below
Tists the steps necessary to change -7 into twos complement form,

1. Express the number in binary form: -0000 0111.

2. Change the value of each digit: if the digit is 0, express it as 1;
if it is 1, express it as 0. This process is refered to as finding the
complement. (Note: the negative sign is dropped.) 1111 1000

3. Add 1 to the number which has just been formed. Notic that the
negative sign is not used. 1111 1001. 1111 1001 is the twos conmplement
equivalent of -7.



To find the sum of two negative numbers, say -7 and -5, the two numbers

are converted to twos complement form, added, and then converted back
into decimal form.

-7 is -0000 0111 binary or 1111 1001 in twos complement form.
-5 is -0000 0101 binary or 1111 1011 in twos complement form.
The sum is then found:
1111 1001
1=]

11 1011
T 17171 0100

Since this number is negative and is in twos complement form, it must be
converted to binary form. To do this:

1. Subtract 1 from the twos complement number (or add the twos complement
equivalent of -1 which is 1111 1111§

2. Find the complement of the number formed above to form the binary
2umber2-0000 1100. Remember the negative sign! This is the binary form
or -12.

Whenever signed numbers are being added, especially with respect to
the 6502 microprocessor, it will be assumed that the results obtained
by the machine are expressed as a binary eight bit number. When the
eighth bit is high (is a 1), this means that the number is negative. When
this bit, the most significant bit, is low (0), the number being expressed
is positive. The procedure given above is followed only when the eighth
bit is high.

The sum of a negative number and a positive number can also be found.
To find the sum of 8 and -5, the following method, which can be used for
finding the sum of any negative and positive number is used.

1. Convert the negative number to twos complement form, -5 decimal (base
ten) equals -0000 010] binary which is 1111 1011 in signed binary form.

2. Convert the positive number into twos complement form. 8 decimal
is equivalent to 0000 1000 in twos complement form (Positively signed
binary numbers are expressed the same as in hinary form.)

3. Find the sum of the twos complement numbers found above in 1 and 2.

11711 1011
0000 1000
TOO0DO 00711

Since the eighth bit is low, the number above is positive, and, therefore,
is a positive 3 (Notice that the ninth bit is high. On the processor,
this condition would cause the carry flag to go high, but this bit does not
indicate sign) Had the eighth bit been high ?1). the number above would
be a negative number and would be expressed in twos complement form.

For pratice, find the following sums by converting the numbers to
signed binary form and then performing the binary calculations. Give
final results in decimal form.

-9, -7 :12, -8 : 6,-10 : 3,8

4-13



ADDING ON THE COMPUTER

Introduction:
The programming steps needed to perform binary addition on the Model 300
Computer Trainer (machine language programming) are discussed.

Discussion:

inary addition can be performed with the computer. The programming
techniques required for this are somewhat more sophisticated than those
used for a simple Jump Absolute program. It is also essential to know
something about computer architecture.

The accumulator of the 6502 microprocessor is an eight bit wide
register in which the results of most of the microprocessor's arithmetic
functions are stored.

Another very important register is the Processor Status Register which
is also eight bits wide. Each bit in the register is used as a flag
indicator. Begining with the Teast significant bit and going to the most
significant bit of the register, the bits indicate; carry,zero result,
interrupt disable, decimal mode, break command, a bit which is reserved
for future expansion, overflow, and negative result.

When writing a program to perform binary addition, the flags or bits
of the status register with which one must be familiar are the carry
flag, the decimal mode flag, the overflow flag, and the negative result flag.

The carry flag is set high when an addition resulting in a nine bit
number has been performed. If the number is eight or fewer bits long,
the carry bit is reset (set to 0).

The computer commands can be used to directly specify the state of the
carry flag. To set the carry flag to 1 (high), the Set Carry Flag command
is used. The mnemonic (letter code) for this is SEC and the hexidecimal
op code is 38. The instruction requires only one byte of memory. Its
addressing mode is implied, indicating that no further memory referencing
is needed in the instruction. The instruction affects only the carry flag.

A second instruction which affects only the carry flag is the Clear
Carry Flag instruction. This command sets the carry flag to 0 (Tow).

Like the set carry flag instruction, it uses only one byte of memory and
uses the implied addressing mode. The mnemonic for the Clear Carry Flag
instruction is CLC and the op code is 18.

The 6502 is able to perform simple arithmetic operations in either
binary or binary coded decimal format. When the decimal mode flag is high (1)
addition and subtraction will be performed in the binary coded decimal form.
The instruction used to accomplish this is Set Decimal Mode which has a
mnemonic of SED and an op code of F8. The instruction uses one byte of
memory and is in the implied mode. It affects only the decimal mode flag.

In order for binary arithmetic operations to take place in the micro-
processor, the decimal mode flag must be set low. This is done by using the
Clear Decimal Mode command which affects only the decimal mode flag by
setting it low. D8 is the op code for this instruction which has a mnemonic
of CLD.

The overflow flag is set high to indicate that the results of an
arithmetic operation could not be contained in eight bits. It is

extremely useful for work with signed numbers.



The programmer has direct access to the overflow fla? through the use of the
Clear Overflow Flag instruction. This one byte, implied mode instruction,
has CLV as its mnemonic and an op code of B8.

The negative flag always has the same value as the eighth bit (D,) of
the accumulator. Being able to have direct access to this bit is ustul
when dealing with signed numbers.

Instructions other than those which affect the status of flags in
the processor status register and the jump command are essential for
fairly simple computer programming.

In order to perform operations using addition, it is necessary to
transfer information which is stored in memory (such as numbers which are
to be added) into the accumulator. This is done with a Load Accumulator
with Memory instruction. The mnemonic associated with this command is LDA.
There are eight possible addressing modes for this command, each having
its own op code. The various modes of addressing will be discussed in a
later section.

A Load Accumulator with Memory immediate mode instruction uses two
bytes of memory. The first contains the op code which is A9. The mnemonic
is LDA #0per. When the immediate addressing mode is used, the second byte
of the instruction contains data, that is, the actual number which is to
be placed in the accumulator.

When an arithmetic operation has been completed and has been stored in
the accumulator, it is necessary to be able to place the information which
is in the accumulator in memory. This will make it possible for the
programmer to gain access to the results of the operation. This is accomplished
with the Store Accumulator in Memory command. This instruction places the
contents of the accumulator in memory, but preserves the contents of the
accumulator. The mnemonic for this instruction is STA and there are seven
possible addressing modes. Since the Model 300 has memory only on page 0,
the zero page mode of addressing is the most appropriate mode to use when
learning the instruction. The op code for this is 85 and the mnemonic is
STA Oper. The first byte of this two word instruction is the op code. The
second is the memory location which MUST be located on page 0.

Once a mode of addition has been selected, that is, either binary or
binary coded decimal arithmetic, memory contents can be added to the contents
of the accumulator. The Add Memory to Accumulator with Carry instruction
which has a mnemonic of ADC is used for this purpose. This instruction has
eight possible addressing modes. The immediate mode uses a mnemonic of
ADC #Oper and has an op code of 69. As previously stated, all instructions
in the immediate mode are two words long with the first word being the op code
and the second being the actual data. Care must be taken when using this
instruction that proper preparation for its use has been made. The
programmer must be careful to set the decimal mode flag. He must also
be careful to clear the carry flag. Otherwise, if the carry flag is high,

a one will be added to the results of his addition. The number which the
programmer wishes to add to the number which is contained in the second
byte of the ADC instruction must be stored in the accumulator PRIOR to the
execution of this instruction. Otherwise, whatever was in the accumulator
will have been added to the data contained in the instruction.

Enough information has been provided so that a simple addition program
can be written and tested. The first step in writing any program which
involves arithmetic is to determine whether the program will make use of
binary arithmetic or binary coded decimal arithmetic. In this case, binary
arithmetic will be used. To simplify matters, only positive numbers will
be added. Once the form of arithmetic has been determined, the memory location

5-8



where the sum of the two numbers is to be stored can be decided. In this
case, the results will be stored at location 0 on page 0. They could, of
course, be stored at any other location within the available memory .

Before the actual addition can take place, the accumulator must contain
one of the numbers which is to be added. At this point, the two numbers can
be summed. Then it is desirable to have the results stored in memory at
location 0 on page 0. Finally, some method of preventing the microprocessor
from executing whatever it finds in memory following the desired program
must be found. Since there is no way of predicting what might 1ie in other
memory locations, it is quite possible that the processor would execute
what appeared to it to be instructions which would result in destroying the
results of the addition. Since there is no halt command for the 6502
processor, another approach will be used. Recall that the Jump Absolute
instruction caused the processor to repeatedly jump to one memory location
without affecting the contents of any memory locations or registers. This
can be used as a means of preventing the processor from executing unintended
instructions.

From the steps outlined above, a short list of what the computer is to
do can be made. This list can then be used to write the program which the
computer will execute.

1. Choose binary arithmetic mode.

2. Load the accumulator with the desired first number, XXXX XXXX.

3. Add the desired second number, YYYY YYYY to the accumulator.

4. Place the contents of the accumulator in memory Tocation 0 on page 0.

5. Have the computer jump repeatedly to the same Jjump command.

This program will begin at location 1 on page 0. It can not begin at
location 0 because that location is being used to store the results of
the addition. Programs, of course, can be started at any memory location.

Op Code Location Mnemonic Note
D8 01 CLD Set in binary mode
18 02 CLC Clear carry bit
AS 03 LDA #0per Load accumulator with first number
XXXX XXXX 04 Data First number
69 05 ADC #Oper Add immediate to accumulator
YYYY YYYY 06 Data Second number
85 07 STA Oper Store results
00 08 Data Memory location where data to be stored
4c 09 JMP Oper Jump to prevent further execution
0% 0A Data Memory location to jump to
00 0B Data Page to jump to

Load the program into memory. Substitute 0000 0101 for XXXX XXXX and
0000 1000 for YYYY YYYY. First run the program with the memory in the
read-only mode. This is accomplished by setting ROM to the right, then
RST to the right, then RUN to the right, and then, finally, RST to the
left. The RUN 1ight should be on and the address and data lights should
indicate that the computer is in the jump loop at the end of the program.
If this does not occur, stop the computer by bringing RST to the right
and the RUN to the left. Recheck the program which was entered. Once
the program successfully gets to the jump routine, run the program with the
ROM switch to the right. It is always best to first test a program 1in
ROM mode and then use it in Read/Write mode. The ROM switch prevents the
processor from writing into memory. This protects the stored program from
being completely erased if it has a 'bug' in it. After running the program

5-c



in Read/Write mode, stop the processor using the standard procedure.
Check your results by reading memory location 0 because this location

will contain the results of the addition (The sum is 13 decimal or

0000 1101 binary.). Try substituting other binary numbers for

XXXX XXXX and YYYY YYYY. The results should again appear in location 0.

To do this, merely load the new numbers in the data locations designated

for X and Y and run the program. There is no need to reload the entire

program!



CONDITIONAL BRANCHING

Introduction:
e concept of conditional branching is discussed.

Discussion:
uring the execution of a program, it is often desirable to be able to

perform one sequence of steps if a specific situation is true and to execute
a different sequence if the situation is false. This is made possible
through the use of conditional branch instructions.

A conditional branch instruction essentially checks the Processor
Status Register to determine the status of a specified bit. If the condition
specified by the instruction is true, the processor will skip the instructions
for the number of memory locations specified by the second byte of the
instruction. This number is added to the value contained in the program counter.
The value contained in the programmer at the time of the addition is the
location of the instruction immediately following the second byte of the
conditional branch instruction. If the condition is false, the processor
will execute the instruction immediately following the second byte of the
conditional branch instruction.

Conditional branch instructions are in the relative addressing mode.
Each instruction is two bytes long with the first byte being the op code.
The second byte of the instruction is the number of memory locations which
are to be "skipped" if the branch does occur.

Instructions whichbranch on the following conditions; carry bit
clear, carry bit set, result zero (zero bit set), result not zero ,
negative bit high, negative bit Tow, overflow bit clear, and overflow bit set.

The following is a 1ist of the mnemonic, op code, and a description
of each of the conditional branch instructions.

Mnemonic Op Code Description
BCC Oper §8 Branch on carry clear

BCS Oper BO Branch on carry set

BEQ Oper FO Branch on result zero

BMI Oper 30 Branch on result minus
BNE Oper Do Branch on result not zero
BPL Oper 10 Branch on result plus

BVC Oper 50 Branch on overflow clear
BVS Oper 70 Branch on overflow set

It is possible to branch forward or backward in memory: going forward
up to 127 Jocations or going back 128 locations. When branching, the processor
treats the number which indicates how far to branch as a signed number.
That is, if the 8th bit is high, the processor deals with the number as a
negative number. When branching to a lower address, the number of memory
locations is expressed in negative form. As with positive values, it is
added to the program counter, which contains the address for the memory
location immediately following the second byte of the conditional branch
instruction. To demonstrate what a conditional branch instruction does, a
short program can be written. The accumulator will be loaded with a number, X,
which will be chosen by the programmer. If the number has bit 8 (D7) high,
the negative flag will be set and the accumulator will be stored in'locatiof 00
of memory. If the negative flag is not affected or is reset, the contents
of 00 will remain unchanged. Steps which can be used to write this program
are as follows.



1. Reserve location 00 for results. Be sure that it initially contains 00.
2. Load the accumulator with XXXX XXXX.

3. Branch if the negative flag is high (to step 5).

4. Jump absolute to prevent further execution.

5. Load the memory location 00 with the accumulator.

6. Jump absolute to prevent further execution.

The following program can be written from the steps given above.

Op Code Location
68 00

A9
XXXX XXXX
30
03
4C
05
00
85
00
4c
0A
00

After the program has been loaded, set the

on page 00.

01
02
03
04
05
06
07
08
09
0A
0B
0c

Mnemonic
ata

LDA #Q0per
Data

BMI Oper
Data

JMP QOper
Data
Data

STA Oper
Data

JMP Oper
Data
Data

Note

Load location 00 with 00

Load accumulator with X

Number being placed in accumulator

Branch if negative flag high

# of locations to s ip

Jump Absolute to prevent further execution
Location to jump to

Page to jump to

Store accumulator in memory

Memory location to hold accumulator

Jump absolute to prevent further execution
Memory location to jump to

Page to jump to

vector to location 01

Eachtime the program is going to be run, location 00 should
be loaded with 00 prior to running the program.
Conditional branch instructions enable the processor to execute one
set of instructions if a given condition is true, and to execute a different
set of instructions if the condition is false.



ADDING SIGNED NUMBERS ON THE COMPUTER

Introduction:
ng signed numbers on the 6502 is discussed.

Discussion:

en dealing with signed numbers, the accumulator can handle numbers
with an absolute value of up to 127. The bits of the accumulator are
designated as bits 0 through 7 with the zero bit representing the least
significant digit and the edghth bit representing the most significant
bit. When dealing with signed numbers, the eighth (D7) bit is used to
indicate whether a number is positive or negative. When the eighth bit
is high, it indicates a negative number, and when Tow, it indicates that
the accumulator contains a positive number. For example, if -6 were added
to 3, the expected results would be -3. Converting -6 to signed binary form
gives 1111 1010. When 3 is converted into twos complement form, 0000 0011
is obtained.

0

1

1

Note that the eighth bit is one, indicating that the results are negative.
This also indicates that the results must be converted to binary format
before they can be converted to decimal form. Converting 1111 1101

into binary form gives -0000 0011. However, the eighth bit will sometimes
be high when the results are positive. In such a case, the overflow flag
will have been set, indicating that the allowable range of values has

been exceeded in the operation. For example, the sum of 126 and 126

would yield:

— e —

11
00
R

- —

101
001
110

11711 1110
1111 1110
TT1T1T 1T1T00

Since the eighth bit is high, a negative number is indicated. However, if
one were to test the overflow flag, it would be found to be high, indicating
that the results were not valid. A similar situation can occur when two
negative numbers are summed. Therefore, whenever signed numbers are
being dealt with, the overflow flag should always be tested.(Note: In
the case of 1111 1110 + 1111 1110, the computer can handle only eight
digits at a time. It will, therefore, with numbers as large as the above,
leave off the most significant digit.)

It is also possible to test the eighth bit automatically to determine
if the number is negative or positive. This can be done by testing the
negative flag which will test high if the eighth bit is high (this flag
will always have the same value as the eighth bit of the accumulator).

When a number, as the results of an operation, has caused the overflow
flag to be set high, the computer is able to indicate this through the use
of a conditional branch instruction.(The use of conditional branch instructions
is discussed in a previous section.) To determine the status of the overflow
bit, the Branch Overflow Set instruction can be used. The mnemonic is
BYS and the op code is 70. The first byte of the instruction is the op code
and the second tells how many memory locations are to be skipped if the
overflow flag is high.



The basic steps for writing a program to add signed numbers are:

1. Load location 01 with 0000 0000. If this remains unchanged
during the execution of the program, it will indicate that the overflow
flag was not set high.

2. Set in binary mode.

3. Clear the carry flag.

4. Load the first number (XXXX XXXX) into the accumulator.

5. Add the second number (YYYY YYYY) to the first number.

6. Place the results in location 00.

7. Test to see if the overflow flag is set, if it is, skip to step 9.

8. Jump Absolute. This will, essentially , prevent the processor
from executing instructions which 1ie beyond those which the user
intends it to execute.

9. Increment or add 1 to location 01 to indicate that the overflow
flag is high. This is accomplished with the Increment Memory instruction
which has a mnemonic of INC Oper and an op code of E6. The first byte
of this two byte instruction is the op code and the second is the memory
location which is being incremented.

10. Jump Absolute. If the computer has executed the branch true portion
of the program (step 9), the Jump Absolute instruction contained in
step 8 will not affect the processor. To prevent the computer from executing
information contained later in memory as if it were part of the program,
a Jump Absolute is used.

Once the sequence of programming steps has been established, the
program can be easily written.

Op Code Location Mnemonic Note
GB 01 Data Tocation 01 to indicate overflow status
D8 02 CLD Set in binary mode
18 03 CLC Clear carry flag
A9 04 LDA #0per Load first number in accumulator
XXXX XXXX 05 Data First gumber being added
69 06 ADC #Oper Add 2"% number to accumulator
YYYY YYYY 07 Data Number being added to accumulator
85 08 STA Oper Store sum in memory
00 09 Data Memory location of sum
70 0A BVS Branch if overflow high
03 08B Data #of addresses to skip if overflow high
4 oc JMP Oper Prevent further execution
oc 0D Data Location to jump to
00 1]3 Data Page to jump to
E6 OF INC Oper Increment to indicate true overflow
01 10 Data Memory location to increment (Page 0)
ac 1 JMP Oper Prevent further execution
1 12 Data Location to jump to
00 13 Data Page to jump to

Initially, substitute -3 for XXXX XXXX and 9 for YYYY YYYY. Remember

to place the numbers in twos com
should be 0000 0110 or 6 decima

g

t form. 1he binary results obtained
he overflow flag shouldn't be affected

so the contents of memory location 01 should still be 0000 0000.



On the second run of the program, substitute 1111 1111 for XXXX XXXX
and 0000 1111 for YYYY YYYY. The overflow flag should be set after the
program has been run and memory location 01 should contain 0000 0001.
Before adding another set of numbers, take care to load location 01
with 0000 0000, or after the next addition, location 01 will contain
$ither ?000 0001 (if the overflow is low) or 0000 0010 (if the overflow

s high)!

Before going on to the next section, try performing other signed
number additions. Work them out on paper as well as on the machine
as this will help one to develop binary arithmetic skills.



SUBTRACTION

Introduction:
ubtraction is discussed.

Discussion:
ubtraction as well as addition can be performed by the computer.
Before having the computer execute a subtract instruction, the carry flag
must be set high. To carry out subtraction, the computer will automatically
complement the number being subtracted. The carry bit is then added to
the complement just obtained. The number from which the subtraction is to
occur is added to the number which has been dealt with in the manner above.
After the subtraction has been performed, the status of the carry bit
must be examined. If it is high, this is an indication that no borrow has
taken place and that the result of the subtraction is a positive number.
A negative number is indicated if the status of the carry flag is low.
A demonstration of the technique used by the microprocessor for
subtraction is quite simple. Below, 5 is subtracted from 9.
0000 1001
0000 0101

Before combining the numbers, the complement of 0000 0101 must be found.
0000 1001
1111 1010

0000 1001
i I 1

OO

The 1 on the left-hand side doesn't fit in the accumulator as it can contain
only eight bits. The ninth bit is expressed as the carry bit. Since the
carry bit is high, it indicates that no borrow has taken place. In other
words, the difference is a positive number, in this case, 4,
For an example of a negative difference, subtract 8 from 2.
0000 0010
0000 1000

Find the complement of 8:
0
1

-0
-0
-0
oo
-0
- O

1
1

Add the carry bit:
0000
1 134

-0
oo
[
oo




Add the numbers obtained on t
0000 0010
1111 1000
TTTT 1T010
Since no ninth or carry bit has been generated, a borrow has occured. The
results must be converted from twos complement to binary form giving
-0000 0010. The decimal equivalent is -6.
The following steps can serve as a guideline for a computer program.
1. Reserve memory location 00 for results and set location 01 to O
as the carry flag indicator.
2. Clear the decimal flag
3. Set the carry bit high.

he previous page:

4. Load the accumulator with the number which will have a number subtracted

from it (XXXX XXXX).

5. Use the subtract with Borrow instruction with mnemonic SBC and
op code E9 in the immediate mode.

6. Store the difference in location 00.

7. If the carry bit is high, go to step 9.

8. Jump Absolute to prevent the processor from executing further instructions.

9. Increment memory location 01.

10. Jump Absolute to prevent execution of further instructions.

Load the program given below into memory. The first time through,
substitute 1 for XXXX XXXX and 9 for YYYY YYYY. The second time the
program is run, subtract 7 from 9.

Op Code Location Mnemonic Note
)] Data Carry flag indicator

D8 02 CLD Clear decimal flag

38 03 SEC Set carry flag

A9 04 LDA #0per Load accumulator with first number
XXXX XXXX 05 Data First number

£9 06 SBC #0per Subtract 2nd# from First #
YYYY YYYY 07 Data Second number

85 08 STA Oper Store results in memory

00 09 Data Memory location

80 DA BCS Branch if carry flag high

n3 08 Data Addresses to skip if branching

4C 0c JMP Oper Prevent further execution

oc 0D Data Memory location to jump to

00 1] 3 Data Page to jump to

E6 OF INC Oper Increment memory to show carry high

01 10 Data Memory location to increment

4c 1 JMP Oper Prevent further execution

1 12 Data Memory location to jump to

00 13 Data Page to jump to

Load the restart vector with location 02 on page 00. (This is placed at
location 02 because this is the location which contains the first executable

instruction.)

Run the program.
reset memory location 01 to 00.
if the subtraction affected the carry

After the fist time through, be sure to
Otherwise, there will be now way of telling
flag.

Work out subtractions on paper as well as by computer. This will
help to familiarize the programmer with binary arithmetic.



BINARY CODED DECIMAL ARITHMETIC

Introduction:
nary Coded Decimal arithmetic is examined.

Discussion:

s well as being capable of performing binary addition, the 6502 can
also deal with Binary Coded Decimal (BCD) numbers. The actual greatest
absolute value of numbers which can be expressed in this format in eight
bits is less than that which can be expressed in simple binary form.

For some applications, this is offset by the ease with which base 10
numbers can be converted to and from binary decimal code.

In binary decimal code, each digit of a base 10 number is expressed
as a four digit binary number as listed below.

Decimal Binary Coded Decimal (BCD
—5 __6565_______________£___l

0001

0010

oon

0100

0101

0110

01

1000

1001

Notice that the binary numbers 1010, 1011, 1100, 1101, 1110, and 1111 are not
used when numbers are expressed in BCD. The eight bits of the accumulator
can be used tggexpress any base 10 two digit number. Examples:

WOONOUD & WRN —

0111 1001

84 1000 0100
56 0101 0110
2 0000 0010

As in binary mode, when the results of an addition produce a binary
number which is Tonger than eight bits, the carry flag will be set high.
If 55 and 54 are added, 109 is obtained. In BCD, this is expressed as:

0101 0101
0101 0100

Remember that in BCD code, the binary number 1010 is not used. The sum of
0101 and 0101 is 0001 0000. In the case where 54 and 55 are added in BCD
code on the computer, the results are stored in the eight bit accumulator and
are 0000 1001 or . To obtain the entire results, the carry flag must

be checked. If the carry flag is high, a third digit in the results is
1?d1cated (the sum will be 1XX). A two digit sum will reset the carry

flag to 0.

When a flag is tested, some way of showing the results of the test is
desired. One simple method is to store a known number in a specified
memory location. For example, 0 could be stored in memory location 01.

If the flag tests high, the memory location can be incremented, that is,
the value in that location can be increased by one. This is accomplished
by an Increment Memory by One instruction which has INC as its mnemonic.



There are four possible addressing modes. When the zero page mode is used,
the corresponding op code is E6. The instruction is two bytes long with
the first byte containing the op code and the second containing the address
for the memory location which is to be incremented.

The steps below are a guide for writing a program to add two binary
coded decimal numbers. Note that a provision is being made for results
which generate a carry.

1. Set aside location 00 for results and set location 01 to 0 as the
carry flag indicator.

. Set the decimal flag to BCD mode.
. Clear the carry flag.

OWRNDD S WM

. Load the accumulator with the first number.

. Add the second number to the accumulator.

. Store the results of the addition at location 01.

Check to see if the carry flag is high.

If the carry flag is high, go to step 10.

. Jump absolute to prevent execution of further instructions.

10. Increment memory location 01 to indicate that the carry flag is high.
11. Jump absolute to prevent further execution of instructions.
Load the program which follows into memory.

Op Code Location Mnemonic Note

00 01 Data Reserved for flag indicator

F8 02 SED Set decimal flag

18 03 CLC Clear carry flag

A9 04 LDA #0Oper Load accumulator with first number
XXXX XXXX 05 Data First number

69 06 ADC #0Oper Add 2nd number
YYYY YYYY 07 Data Second number

85 08 STA Oper Store results in memory

00 09 Data Memory location to store results at

B0 0A BCS Oper Check carry flag

u3 0B Data Distance to branch if carry bit high

AC 0c JMP Oper Prevent further execution

oc 0D Data Memory location to jump to

00 0E Data Page to jump to

E6 OF INC Indicate carry bit high by memory inc.

01 10 Data Memory location to be incremented

4C 1 JMP Oper Prevent further execution

1N 12 Data Memory location to jump to

00 13 Data Page to jump to

Set the restart vector to location 02 on page 00. Run the program
adding 50 + 64.

or 0001 0100.

The results that appear in memory location 00 will be 14
Location 01 will have been incremented indicating that the

addition has resulted in a three digit number; 114.

Try adding other BCD numbers.
acceptable in BCD form (eg. don't use 1111). Before adding each new set of
numbers, load Tocation 01 with 0.

Be careful to use only numbers that are

This will insure that location 01

will contain a 0 unless it has been incremented, indicating that the
carry flag has been set.

9-8



LOGICAL OPERATIONS

Introduction:
ogical operations and their applications are introduced.

Discussion:

e 6502 microprocessor is able to perform three different logic
operations. They are AND, OR and exclusive OR. The results of each
can be expressed by a truth table.

AND OR EXCLUSIVE OR
1 0 1 0 1 0

1 1 0 1 1 1 1 0 0

0 0 0 o 1 0 0 0 1

A four bit example of each operation is given below.

AND OR EXCLUSIVE OR

1001 1010 0011

1100 0110 1010

The most frequent application of the logical AND instruction is to set
specific bits in the accumulator low. If, for example, a programmer wishes
to clear bits 5 and 6, he can AND those two bits with 0. When either a
high or a low is ANDed with a low, the results are low. To preserve each
of the other bits in the accumulator, they are ANDed with 1. Since a
high ANDed with a high remains high and a low ANDed with a high remains low,
the other bits are unchanged. Below an example is given. To clear bits
5 and 6 of 1010 1010, this number is anded with 1100 1111.

1010 1010

1100 1111

1000 1010
The AND instruction can be used in eight modes. In the immediate mode, the
mnemonic is AND #Oper and the op code is 29.

The OR instruction, unlike the AND command, is used mainly to set bits
high. Supose that a programmer wishes to set bits 1, 2, and 3 high. To do
this, he will OR bits 1, 2, and 3 with 1. This will cause these bits to be
set high regardless of their initial state. All other bits will be ORed
with 0, causing them to retain their initial state.

1010 1010
0000 0111
1010 1111

Like the AND instruction, the OR instruction has eight different modes
of address. The op code for the immediate mode is 09 and the mnemonic is ORA #Oper.

The third logical operand is the exclusive OR. The primary application
of this operand is to find the complement of binary numbers. This is
extremely valuable for converting numbers to and from their negative values.
When exclusive ORed with a Tow, a high goes low while a Tow goes high. The
number used above is easily complemented using the exclusive OR operand.

1010 1010
0000 0000

[o-R



To obtain the negative value of the original number in twos complement form,
a one is added to its complement.

To convert a number which is negative into positive form, one is
subtracted from the number and the difference is exclusive ORed with
0000 0000 resulting in the positive value.

The programming steps needed to convert a negative number into positive
format are given below.

1. Clear the decimal mode flag.

2. Set the carry flag high.

3. Load the negative number into the accumulator (XXXX XXXX).

4. Subtract 1 from the accumulator.

g. Exclusive OR the accumulator with 0000 0000.

Op Code Location Mnemonic Note
CLD CTear decimal flag
38 02 SEC Set carry flag high
A9 03 LDA #0per Load the accumulator
XXXX XXXX 04 Data Number to be converted
E9 05 SBC #0per Subtract one from the accumulator
01 06 Data One- the number being subtracted
49 07 EOR #0per Exclusive OR accumulator
00 08 Data number accumulator being EORed with
85 09 STA Oper Store accumulator in memory
00 0A Data memory location where accumulator stored
4c 1]:} JMP Oper Prevent further execution
0B oc Data Location to jump to
0o 0D Data Page to jump to

Substitute -3 for XXXX XXXX, expressing -3 in negative form (twos comple-
ment) or 1111 1101 and load the program into memory. The memory
restart vector is at location 0] on page 00. The results of the first
program run, as contained in memory location 00, should be 0000 0011.

This program, with slight modifications, can be added to a signed
arithmetic program. Some provision must be made to indicate if the results
are negative or positive.

|o-13



DOUBLE PRECISION ARITHMETIC

Introduction:
The procedure for double precision arithmetic is explored.

Discussion:

t 1s often useful, when working with the computer, to deal with numbers
of a greater magnitude than can be handled within eight bits. To do this, two
eight bit binary numbers can essentially be treated as one 16 bit number. It
is also possible to utilize more than two bytes when it is desired to form
even larger numbers.

The numbers 1099 and 9855 can be converted to binary coded decimal
form and added.

1099 becomes 0001 0000 1001 1001

9855 becomes 1001 1000 0101 0101

The sum is 1 0000 1001 0101 0100 which is 10,954 decimal.

These BCD numbers can not be directly added in the accumulator because
it is capable of working with only eight bits at a time. To get around this,
each number is broken up into eight bit segments. The first addition is
performed between the eight least significant bits of each number and is
stored in memory. If this addition causes the carry flag to be set high,
the carry bit will automatically be added to the next set of numbers being
added in the accumulator (providing that other operations affecting the
status of the carry flag are not performed first). In other words, the
Add with Carry instruction automatically causes the contents of the carry
flag to be added to any numbers being added in the accumulator.

The programming steps for a BCD double preefsfon addition are given
below. The sum is being stored in location 00 and 01 with 00 containing
the eight least significant bits while 01 contains the eight most significant
bits of the sum. The first number is XXXX XXXXo XXXX XXXX] and the second
number is designated as YYYY YYYY, YYYY YYYY,.

1. Set aside locations 00 ang 01 for the sum. Load location 02 with
0000 0000 to serve as the carry flag indicator for the last portion of the
addition.

2. Set the decimal mode flag.

. Clear the carry flag.

. Load the accumulator with XXXX XXXX] .
Add YYYY YYYY, to the accumulator.

. Store the results in location 00.

. Load the accumulator with XXXX XXXXZ.
. Add YYYY YYYY, to the accumulator,

. Store the results in location 01.

10. If the carry flag is high, go to step 12.

11. Prevent the processor from executing further instructions with a
Jump Absolute instruction.

12. Increment memory location 02 to indicate that the carry flag is set high.

13. Prevent further execution of instructions with a Jump Absolute.

WSO W

The restart vector for the program appearing on the followin page
is location 03 on page 00. This is because the first executable instruction
is located at location 03. Each time the program is run after the first run,
care should be taken to load location 02 with 0 so that the status of the
carry flag can be determined after the program has been run.

I1=A



Op Code Location Mnemonic Note

00 02 Data Carry flag indicator location
F8 03 SED Set to decimal mode
18 04 CLC Clear carry flag
A9 05 LDA #0per Load accumulator
XXXX XXXXq 06 Data First half of first number
69 07 ADC #Oper Add with carry
YYYY YYYY] 08 Data First half of second number
85 09 STA Oper Store accumulator in memory
00 DA Data Memory location where acc. stored
A9 0B LDA #0per Load Accumulator
XXXX XXXX2 0c Data Second half of first number
69 0D ADC #Oper Add with carry
YYYY YYYY, 0E Data Second half of second number
85 OF STA Oper Store results in memory
01 10 Data Memory location for partial sum
BO 11 BCS Branch if carry flag is high
03 12 Data # of addresses to skip if carry set
4C 13 JMP Oper Prevent further execution
13 14 Data Memory location to jump to
00 15 Data Page to jump to
E6 16 INC Oper Increment memory to indicate carry set
02 17 Data Memory location to be incremented
4c 18 JMP Oper Prevent further execution
18 19 Data Memory location to jump to
00 1A Data Page to jump to

Subtraction can also be carried out in double precision. The procedure
for double precision subtraction is quite similar to that for single precision
subtraction. Prior to subtracting, the carry bit must be set high. However,
between subtractions involving two multibyte numbers, the carry bit should
not be set or reset.

As with double precision addition, provisions must be made to indicate
the final status of the carry flag. If it is 0, the difference is negative
and is expressed in twos complement format. If the carry bit is high,
the difference is positive and is expressed in twns complement form which
requires no conversion (for positive numbers) for binary form.

-8



STACK PROCESSING (SUBROUTINES TO BE COVERED LATER)

Introduction:
The use of the stack for information storage is discussed.

i ion:
g-ésaﬁéngfhtermediate results are found during a series of operations, it
is often inconvenient to place these results into directly specified memory
locations. The programmer must use two to three bytes to retrieve it.
In addition to this, he must keep track of all specified memory locations.
If the programmer wishes to store information contained in the Processor
Status Register, even more valuable memory space is used. He must test for
specific conditions such as overflow high, and so forth. Then, if the
specific condition is met, he must branch to another part of the program
which will leave an indicator in memory. If the programmer later decides
to add a single instruction, many program alterations may be needed.

Fortunately, an alternative to the above is available. The Program
Stack can be used to hold the contents of the accumulator, the Processor
Status Register, and the X and Y Registers. The contents of the stack can then
be placed in the accumulator, the Status Processor Register, or either the
X Register or the Y Register.

The stack is normally on paae 01, but on the Model 300 is on
page 00. The stack will begin at the high order memory location on the page
chosen by the programmer, or location 7F (FF on pages with a full page of
memory). The first information placed on the stack will be placed at
location 7F. The next byte placed on the stack will be at 7E. A third word
would be stored at location 7D. When information is to be retrieved from
the stack, the information most recently stored will be the first to be
recalled. If three bytes have been stored, they will be retieved in the
following order: contents of 7D, then 7E, and then 7F.

It should be noted that the programmer must take care not to place program
instructions in the memory locations which are being used for the stack.

Before the stack is used, the stack pointer must be initialized. The
stack pointer is a 16 bit counter containing the memory address for the stack.
This is initialized in the following manner. The X Register is loaded with the
desired contents of the stack pointer. The Load X immediate instruction
is followed directly by Transfer Index X to Stack Pointer command. This
makes the contents of the stack pointer register equal to those of Register X.
The mnemonic for Loading X with memory in the immediate mode is LDX #Oper
and the op code is A2. As with other immediate instructions, this is a
two byte instruction with the first byte containing the op code while the
second contains the data which is to be placed in Register X. The Transfer
Index X to Stack Pointer instruction is a one byte instruction in the implied
mode. The op code is 9A and the mnemonic is TXS.

Data is stored in the stack using either the Push Processor Status on
Stack or the Push Stack Accumulator on Stack instruction. These two instructions
transfer data to the next location on the stack and decrement the stack pointer
so that it points to the memory location with an address one less than the one
just loaded with data.

The Push Accumulator on Stack instruction places the data contained in
the accumulator on the stack. The mnemonic is PHA and the op code is 48.
Since this instruction is in the implied mode, it uses only one byte of
memory. The implied mode of addressing is also used by the Push Processor
Status on Stack instruction. PHP is the mnemonic for the instruction which
has an op code of 08.

12-A



When information is retrieved from the stack, it is placed directly into
the accumulator or into the Process Status Register. Two single byte implied
mode instructions are available to "pull" data from the stack. The Pull Accumu-
lator from the stack instruction which has a mnemonic of PLA increments the
stack pointer by one and uses the new value to address a location in the stack
and load its contents into the accumulator. The op code is 68. The Pull Pro-
cessor Status from Stack instruction is 1ike the Pull Accumulator from Stack
instruction except that it places data in the Process Status Register rather
than in the accumulator. It has a mnemonic of PLP and an op code of 28.

These instructions make it possible to store the contents of the Processor
Status Register into the stack and then into the accumulator. This gives the
programmer access to information about the overflow flag, the carry flag,
and so on. The flags of the status register from the most significant bit to
the least significant bit are: negative result, overflow, reserved for future
expansion, break command, decimal mode, interrupt disable, zero result,
and carry. This is important for the begining programmer as it enables him
to see what conditions have been created in the Processor Status Register as
the result of any specific accumulator operation. One might wish, for example,
to see if the results obtained in the accumulator are zero and if the machine
is operating in decimal mode. Below, the steps for a program to allow the
user to examine the Processor Status Register and the difference after a
subtraction is performed are outlined.

1. Initialize the stack pointer by loading X with the location where the
stack is to begin. Transfer the value from the X register to the stack pointer.

2, Set decimal mode.

3. Set the carry flag.

4. Load the accumulator with the number which will have number subtracted
from it.

5. Subtract

6. Store the difference in location 00

7. Place the contents of the Processor Status Register in the stack.

8. Jump Absolute to prevent further execution

A program to do this follows.

Op Code Location Mnemonic Note
01 LDX #Oper Load Reg. X with stack pointer address

7F 02 Data Stack pointer address

9A 03 TXS Load Register X in stack pointer

F8 04 SED Set decimal flag

38 05 SEC Set carry flag

A9 06 LDA #0Oper Load accumulator with first number
XXXX XXXX 07 Data First number

E9 08 SBC #(Oper Subtract 2nd number from first
YYYY YYYY 09 Data Second Number

85 0A STA Oper Store difference in location 00

00 08 Data Location for data storage

08 0c PHP Push Register on Stack

4C 0D JMP Oper Jump to prevent further execution

0D OE Data Memory location to jump to

00 OF Data Page to jump to

Load the program above. Set the reset vector at location 01 on page 00.
After running the program, the difference will be stored in location 00. The
contents of the Processor Status Register after the subtraction was performed
will be contained in memory location 7F which is where the stack has been

12-83



loaded. Notice that if one were to place several numbers on the stack, it
would be necessary to place the stack below the reset vector. This is
necessary on the Model 300 Computer Trainer because with the Timited memory,
data would soon be stored in the memory at Tocation 7C and at location 7D,
erasing the desired reset  vector. If it becomes necessary to actually have
the stack write in the "S€T  yector locations, care must be taken to
reload the reset vector each time that the program has been run.

Initially, run the above program with 77 being subtracted from 77.
After the program has been run, 0000 0000 should be contained in location 00.
The contents of the Processor Status Register will be contained in 7F.
It should contain 00XX 1X10 where X represents an unknown or "don't care"
state. From left to right, the digits represent negative result, overflow,

future expansion, break command, decimal mode, interrupt disable, zero
result, and carry flag.

The contents of the accumulator can also be placed on the
stack. This makes it fairly easy to perform a series of arithmetic or
logical operations, store the results and retrieve them after executing another
series of instructions which will alter the contents of the accumulator.
The contents of the accumulator can be examined just as the contents
of the Processor Status Register are examined in the previous program. This
is easily accomplished by changing the contents of location 0C from 08 to
48. In other words, the Push Status Register on Stack command is changed
to the Push Accumulator on Stack Instruction.

/12-Cc



SUBROUTINES

Introduction:
e use of subroutines and a technique for programming with them on the
6502 processor is discussed.

Discussion:

n long programs, there is frequently a set of instructions which is used
repeatedly. Rather than rewrite such a set of instructions numerous times,
a subroutine can be used. A subroutine is, essentially, a program within a
program. It is also possible to "nest" subroutines, that is, have a subroutine
within a subroutine.

The processor instruction set includes a jump to subroutine and a
return from subroutine instruction.

The Jump to Subroutine instruction is a three byte instruction in the
absolute addressing mode with the first byte containing the op code, the
second byte containing the memory location of the first instruction of the
subroutine, and the third byte indicating the page on which the subroutine
begins. This command causes the processor to begin executing instructions at
the location specified by the second and third bytes of the instruction. It
also loads the address of the third byte of the Jump to Subroutine instruction
on the stack. This will make it possible for the program to "return” to
the memory location immediately following the jump when the subroutine has
been completed. The instructions Ymmediately following the Jump to Subroutine
instruction will be carried out when a Return from Subroutine instruction
has been executed. The mnemonic for the Jump to Subroutine command is JSR
and the op code is 20.

The Return from Subroutine instruction has RTS as its mnemonic and has an
op code of 60. The command is in the implied mode and uses one byte of memory.

This command causes the processor to return to the memory location immediately
following the Jump to Subroutine instruction which caused the processor to
begin executing the subroutine. When this command is executed, the stack
pointer will be incremented by two. Keep in mind that the stack was
decremented by two when the original Jump to Subroutine instruction was
performed. Two bytes were loaded with information: the first was loaded
with the memory location of the last byte of the Jump to Subroutine instruction
and the second was loaded with the page.

One of several methods for performing multiplication on the microprocessor
involves successive addition. This technique can use a subroutine. An example
of a procedure for having the microprocessor do this is covered below.

1. Clear the carry flag.

2. Set the decimal mode flag.

3. Initialize the stack. Load X immediate with starting location which is
7F. Then, transfer the contents of X to the stack pointer.

4. Load the accumulator with the first number, XXXX XXXX.

5. Load the Index Register X with the contents of the accumulator.

6. Load Index Register Y with the second number, YYYY YYYY.

7. Decrement Register Y.

8. If Y # 0, Jump to the subroutine

g, Store the accumulator in memory

10. Jump Absolute to prevent further execution.

13-A



THE SUBROUTINE

11. Add the contents of Register X to the Accumulator.

12. Decrement Index Register Y.

13. If Register Y # 0, go to step 11

14. Return from subroutine.

Notice that a program to do this can easily be written without the use
of a subroutine. The subroutine is used here to demonstrate the procedure
used for programming with subroutines.

The program on the following page is based on the procedure outlined
above. The program itself begins at location 02. The subroutine starts
at location 50.

Load the program into memory. Set the reset vector for location 02
on page 00. Before running the program a second time, check to see that
the restart vector is still properly loaded. If it isn't, interference
between it and the stack may have occured. In this case, reload it before
running the program again.

Use the program above to multiply any two numbers where the product
;sn't above 199. Also note that the program has no provision for multiplying
y Zero.

Generally, subroutines are used in situations where one set of instructions
is repeated so many times that it is impractical to write them each time. A
program that proves to be useful as a portion of several different programs
can also be used as a subroutine,

13

|
o



Op Code Location Mnemonic

18 02 CLC

38 03 SED

A2 04 LDX #Oper

7F 05 Data

aA 06 TXS

A9 07 LDA #Oper
XXXX XXXX 08 Data

85 09 STA Oper

01 0A Data

AO 08B LDY #0per
YYYY YYYY oc Data

88 0D DEY

FO OE BEQ

03 OF Data

20 10 JSR

50 11 Data

00 12 Data

85 13 STA Oper

00 14 Data

4C 15 JMP Oper

15 16 Data

00 17 Data

NOTE  FOLLOWING

65
01
88

FO
03
4c

50
00
60

50
51
52

53
54
55

56
57
58

MEMORY LOCATION

ADC Oper
Data
DEY

BEQ
Data
JMP Oper

Data

D ata
RTS

13 <

Note

Clear carry flag:
Set decimal bit
Load X with stack location

Location for the stack

Load X in stack pointer to complete
stack initialization

Load Accumulator with first number

First Number
Store accumulator in memory
Memory location

Load Register Y with 2nd number
Second number
Decrement Register Y

Branch if ¥ is ©
# of instructions to skip
Jump to Subroutine

Memory location
Page
Store accumulator (product)

Memory location
Jump Absolute to prevent further execution
Memory location to jump to

Page to jump to

Add memory to accumulator
Memory location added to accumulator
Decrement Register Y

If Register Y=0, go to location 58
Number of locations to skip
Jump to 50

Memory Tocation to jump to
Page to jump to
Return from Subroutine



FLOWCHART ING

Introduction:
The use of flowcharts for programming is introduced.

Discussion:

n previous sections, the steps needed in a program have been written
out in  step by step fashion. This method can become rather tedious and
somewhat confusing, especially for programs with several conditional
branches. Flowcharting, a technique that is frequently used to represent
aiﬁiqgence of steps, makes it much easier to visualize what the program
W 0.

In flowcharting, each instruction or step is placed in one "box."

For the purposes of this manual, there are five types of boxes. When
used in a flowchart, each box will contain the mnemonic or a description
of the instruction it represents.

Each instruction which indicates an operation which involves no decision
and d?es n?t involve input/output (I/0) 1is placed in a rectangular
box. (2

A command involving operations involving a decision are placed in a
diamond shaped box. (<> ) On the 650X, instructions of this type are
the conditional branch instructions. The processor must "decide" if the
condition on which it is going to jump is true or false.

When output to a peripheral (not the LEDs on the Model 300) is involved,
a box which has a curved base is used. (= )

Situations where the processor is accepting data from an I/0 device are
indicated by a rectangle with a small diagonal slice removed from the
upper left-hand corner. ()

To indicate the begining of a flowchart, a circle with "start" within
it is used. ( r ) The end of a flowchart is shown by a circle
containing the word "end." ( @&nd ) In this manual, the end box will
be used to represent the Jump Absolute instruction where it is used to
prevent the processor from executing instructions in locations beyond the
program.

The boxes within a flowchart are connected by lines. An arrow is placed
between each box indicating the direction of flow. To help illustrate how
a flowchart is formed, a flowchart which could be used to write a program
for adding two signed numbers is give. This flowchart could have been
written for a previous section in which such a program is executed.

4 -R



Load M
‘ with 00

Set in
Binary
Mode

2

Clear
Carry
Flag

v

Place X in
Accumulator

t.._T__J

Add Y to
Accumulator

N

Store
Results
at 00

Yes

Overflow

High
? A\
Add 1 to
Location

01

()

|
D

/Y



MULTIPLYING TWO FOUR BIT NUMBERS

Introduction:
Another procedure for multiplying two numbers is examined.

Discussion:

ne technique for multiplying binary numbers has already been examined:
successive addition. Another method quite similar to that normally used in
base 10 arithmetic can be used. The numbers are first written in standard

binary form. In this case, 6 X 9 will be multiplied to demonstrate the
technique.

0 0

1 1

11
00

The next step is to multiply the top-most number by the right-hand most
digit of the lower number.

0110

1001

When this value has been found, the top number is multiplied by the digit

next to the right-hand most digit of the lower number. The partial product

is written under the previous partial product with the least significant digit

directly undea %hi Becond digit (from the right) of the first partial product.
1001

0000

The same procedure is used for the next two digits of the bottom number. Then
the partial products are added.

0100

1001

0000
0000
011
oTT1To01T1Q0

To "check" the solution, it can be converted into decimal form:
0110110 equals

0(2)6 + 1(2)5 + 1(2)4 + 1(2)3 + 0(2)2 + 0 (2)! + 0(2)0

=64 +0+16+8+0+0 +0 =88

Note that each time a partial product is found, the product is either
zero or it is identical to the top line. This fact can be used in programming
the microprocessor to perform multiplication.

It should also be observed that each partial product, instead of being
placed directly under the partial product above it, has been shifted one
digit to the left. This must be done prior to adding the partial products
together. An operation called a shift memory or accumulator left one bit
permits this to be done in the microprocessor. (It is also possible to
shift the contents of the accumulator or memory to the right one bit.) When
shifting the contents of the accumulator or memory one bit to the right or
left, one bit is "pushed out" of the eight bit memory location or the eight

oo oOo

ISs-A



bit accumulator. It is then stored as the carry bit. This proves to be
very valuable for multiplication. The bottom number (of the two which are
being multiplied) can be shifted, one bit at a time, to the right. After
each shift, the carry bit can be examined to determine its status. If it

is high, the top number will be used as a partial product for the digit
which was just placed in the carry bit portion and the top number. If the
carry bit is low, the resulting partial product is zero.

The flow chart on the following page shows steps which can be used to
multiply two numbers. Memory location 00 will be used to store the results.
Locations 01 and 02 contain the numbers which are to be multiplied together.
Location 03 holds a counter. Each time the program has dealt with one
partial product, the counter will be decremented. When all four partial
products have been found, the counter will have been decremented to zero.

At this point, the sum of the partial products will be stored at location 00.

The flow chart on the following page can be easily translated into the
following program.

JOp Code Location Mnemonic Note
XXXX 01 Data First number
YYYY YYYY 02 Data Second Number
05 03 Data Counter
18 04 CLC Clear carry flag
D8 05 CLD Place in binary mode
A9 06 LDA #Oper Load accumulator with zero
00 07 Data 0 being loaded into accumulator
C6 08 DEC Oper Decrement counter
03 08 Data Location of counter
FO DA BEQ Branch if counter reaches 0
0B 0B Data How far to skip if counter = 0
46 0c LSR Oper Shift X one bit to the right.
01 oD Data Memory location of X
90 0E BCC Branch if carry bit is low
03 OF Data How far to skip if carry bit low
18 10 CLC Clear carry bit before addition
65 11 ADC Oper Add Y to accumulator
02 12 Data Location of Y
06 13 ASL Oper Shift Y one bit to the left
ac 14 JMP Oper Go back to location 08
08 15 Data Memory location to jump to
00 16 Data Page to jump to
85 17 STA QOper Store final product
00 18 Data Memory location 00
ac 19 JMP Oper Jump Absolute to prevent further
execution
19 1A Data Memory location to jump to
00 1B Data Page to jump to

Is=-13



/

Store X
in M

Decrement
Counter
at 03

Store Y
in 02

Yes

4

Store 05 as
Counter at
Location 03

Shift X
One Bit
to Right

2

Clear
Carry
Flag

Y

Clear
Decimal
Mode

Clear
Carry
Flag

Y

Y

Clear
Accumulator

Add Y to
Accumulator

14‘

Shift ¥
One Bit
to the Left

| S, |

|S-C

Store
Results
in 00




Load the program. The restart vector should be loaded with locatin 04
on page 00. The first time the program is run, let the first number be
5 and the second be 7.

Notice how the shift instructions have been used in the program above.
They can also be used directly in the multiplication and division process.
Shifting any binary number once to the right is the same as dividing the
number by two, just as shifting any base 10 number once to the right is
the same as dividing by 10. Shifting a binary number once to the left is
the same as multiplying it by two. Shifting twice to the left is multiplying
by four and shifting three times to the left is multiplyin? by eight.

This information is quite useful when one wishes to multiply a series of
numbers by a constant.

IS-D



COMPARE

Introduction:

e use of the Compare instruction for

inequality and equality is described.

Discussion:

determining condftions of

t times, it is desirable to determine the relationship between two

numbers, i.e.
This can be accomplished through the
on the 650X microprocessors.

» greater than, less than, and so on.

use of the Compare instruction

The contents of a specified memory location

are subtracted from the contents of the accumulator by the Compare command.

While the results of this subtraction

do affect the Processor Status Register.

operation are indicated in this register
negative bit

are not stored in the processor, they

The results of the compare
as follows:
carry Zero Overflow

Accumulator less than memory X
Accumulator equals memory 0
Accumulator greater than memoryX

The flow chart on the following page can

program which can be used to determine th

0 0 Not affected
1 1 Not affected
] 0 Not affected

be used to write a computer
e relationship between two numbers.

The outcomes will be stored in location 00 with 0000 1111 indicating that the

accumulator is less than the memory,
and memory contain equal values, and
is greater than the memory,

0000 0000 indicating that the accumulator
1111 0000 indicating that the accumulator

The program below can be written from the flowchart.

Op Code Location Mnemonic
XXXX 01 Data

D8 02 CLD

AS 03 LDA #Oper
YYYY YYyy 04 Data

cs 05 CMP

01 06 Data

BO 07 BCS

09 08 Data

FO 09 BEQ

14 0A Data

A9 (0]:] LDA #0per

FO 0cC Data

85 0D STA Oper

00 OE Data

4c OF JMP Oper

OF 10 Data

00 1 Data

AS 12 LDA #0per

OF 13 Data

85 14 STA Oper

00 15 Data

4c 16 JMP Oper

16 17 Data

00 18 Data

le~-A

Note

First number to be compared

Clear decimal mode

Load Accumulator

2nd number to be compared

Compare accumulator and memory
Memory location

Branch if carry high

Number of instructions to branch
Branch if zero bit is high

Number of instructions to branch
Load Accumulator with number for memory
Number to be stored at 00

Store accumulator in memory
Memory location

Jump to prevent further execution
Memory location to jump to

Page to jump to

Load accumulator with number for memory
Number to be stored at 00

Store accumulator in memory
Memory location

Jump to prevent further execution
Location to jump to
Page to jump to



Store X in
Location 02

\7

Clear
Decimal
Mode

Store Y in
Accumulator

Zero Flag
High?

No

Load
Accumulator
with OF

Load
Accumulator
with 00

Load 00
with
Accumulator

N4

Load
Accumulator
with FO

Load 00
with
Accumulator

Compare
Location 02
with Memory

Load 00
with
Accumulator

)

|6

1
(o))

&)

2




Op Code Location Mnemonic Note

Ag 19 CDOA #0per [0ad accumulator with number

00 1A Data Number to be stored at 00

85 18 STA Oper Store accumulator in memory

00 1C Data Memory location

ac 10 JMP Cper Jump to prevent further execution
10 1E Data Location to jump to

00 1F Data Page to jump to

Load the program given above and on the first page. The restart vector
for the program above is location 02 on page 00. To fully test the program,
each possible condition should be tested for. In one case, the first and
second number should be equal. In a second case, the first should be
greater than the second, and in the third case, the first number should
be less than the second.

If the programmer wishes to test for a greater than or equal to
condition (where the accumulator is greater than or equal to the memory),
he will test to see if the accumulator has a value less than that of the
specified memory location. If it doesn't, a greater than or equal to
condition exists. After performing a compare between the accumulator and
memory, this condition will be tested by checking the carry flag. If the
carry flag is high, a greater than or equal to relationship exists.

Testing for a less than or equal to condition is accomplished by
testing to determine if the value stored in the accumulator is greater than
that of a specified memory location. If it is, the value in the accumulator
is less than or equal to that in the memory location. After a compare is
executed between the accumulator and specified memory location, the less
than ot equal to relationship is tested by checking carry and zero bits.

If the carry bit is high while the zero bit is low, the less than or
equal to relationship does not exist.

|e-C



ADDRESSING MODES

Introduction:
Various addressing modes available on the 6502 microprocessor are described.

Discussion:

n previous discussions, the existence of more than one addressing mode
for various instructions has been mentioned. The addressing modes are implied,
immediate, absolute, zero page, relative, absolute indexed, zero page indexed,
indexed indirect, and indirect indexed.

An instruction using the implied addressing mode is expressed in one byte.
Commands using this mode of addressing are dealing with flag bits, the accumulator,
or the X or Y Registers, but do not refer to any memory location.

In addition to the accumulator, the microprocessor has two registers: X
and Y. These, like the accumulator, are not assigned a memory address location.
One byte instructions can be used to transfer information between these registers
and the accumulator. One byte instructions are also available for the X and Y
registers to increment and decrement their contents.

A11 instructions involving setting or clearing a CPU status register flag
use the implied mode.

A NOP or No Operation instruction is also in the implied mode. This
instruction is used by the programmer when he wishes to be able to place
additional steps in a program at a later date without changing the memory
locations of other instructions. It can also be used when a programming step needs
to be deleted and a change in memory locations for other commands is undesirable.

Instructions in the immediate mode require two bytes. The first contains
the op code for the instruction and the second consists of the data which is
being acted upon. For example, a load accumulator immediate instruction will
devote the first byte to the op code. The second byte contains the information
that is to be loaded into the accumulator. This addressing mode is convenient
to use when one knows the exact value of the data being dealt with. It is also
quite efficient in terms of memory usage because it uses only two bytes of
memory and does not require that further information be stored at another
memory location.

Types of instructions which can be used in the immediate mode are
logical operations, arithmetic operations, compare instructions, load accumulator
or the X or Y Register.

When an instruction is given in the absolute mode, the memory and page
Tocation of the data which is to be acted upon is specified. The instruction is
three bytes long with the first byte indicating the op code, the second showing
the memory location, and the third indicating the memory page. Instructions
available in the absolute mode are those involving arithmetic operations,
rotating or shifting data in a memory location left or right, memory bit testing,
compare operations, incrementing or decrementing memory, logical operands,
unconditional jump, and storing the accumulator or a register in memory.

The zero page addressing mode is very similar to the absolute mode
except that it is only two bytes long. As with the absolute mode, the first
byte is the op code and the second byte is the memory location. When the 2ero
mode is used, no third byte is needed as the page location is automatically 00.
The advantage of the zero page addressing over the absolute addressing is that
it uses one Tess word of memory and it is somewhat faster. It does, however,
Timit the user to storing data on page 00. (It should be noted that all of
the memory on the Model 300 Computer Trainer is located on page 00.)

/17-A



Instructions which can be used in the zero page addressing mode are
arithmetic operations, logical operations, memory bit testing, compare operations,
memory increment and decrement, Toading the accumulator or Register X or Y
from memory, rotating bits left or right, and storing the accumulator or a
register in memory.

Relative addressing is used with conditional branch instructions.
Instructions using this mode require two bytes. The first contains the op
code. The second byte contains the number of memory locations that will be
skipped if the branch condition is met. This addressing mode enables the
programmer to write a program without needing to decide where it will be
Tocated until it is entered into the machine. He can even add or delete
instructions with the only changes being made, other than the addition or
deletion, in the second byte of any conditional branch instruction. This mode
of addressing is used only with conditional branch instructions and is the
only addressing mode used by these instructions.

It should be noted that as well as enabling the processor to conditionally
"Jump ahead" in memory, the relative addressing mode's instructions also
make it possible to branch backwards in memory.

Absolute indexed addressing is the same as absolute addressing except
that the contents of either Register X or Register Y are added to the ab-
solute address before the operation is performed.

Instructions which can be used in the absolute indexed addressing mode
using Register X are; addition, AND, shift left one bit memory, compare memory
and accumulator, exclusive OR, load accumulator from memory, increment memory,
decrement memory, load Y with memory, shift memory right one bit, OR memory
with accumulator, rotate memory one bit left, subtract memory from accumulator,
and store accumulator in memory.

Using Register Y in the absolute indexed addressing mode can be accomplished
for add with carry, AND, compare, exclusive OR, load accumulator with memory,
Toad Register X from memory, OR, subtract with carry, and store accumulator
in memory.

Zero page indexed addressing is identical to absolute indexed addressing
except that the third instruction byte is omitted as the page location is
automatically 00. Instructions which can be used in this mode are add and
subtract, logical operands, increment and decrement, store accumulator in memory,
store Register Y in memory, compare memory with accumulator, rotate one bit
left, shift right one bit, and shift left one bit.

Indexed indirect addressing is primarily used to obtain data from tables
which the programmer has stored in memory. Instructions in this mode use two
bytes of memory, the first being the op code. The second byte of the instruction
is added to the contents of Register X. The resulting sum is treated as a
memory location on page 00. The contents of this location will be used as the
memory location of the actual data. The sum mentioned earlier will be incremented
and treated as the memory location containing the page number on which the
actual data appears.

Due to the memory and register space needed to utilize this addressing
mode, it is very impractical to use it with the Model 300 Computer Trainer.

It also takes more time to execute the instruction than it does to perform an
instruction in the absolute mode. This type of addressing can be used with the
following instructions; logical operands, addition and subtraction, compare
accumulator with memory, load accumulator from memory and store accumulator

fn memory.

17-8



Indirect indexed addressing uses two bytes of memory. The first contains
the op code. The second contains a page 00 address. The contents of this
address are added to the contents of Register Y. The results indicate the
memory location of the actual data which the instruction will act upon. The
address contained in the second byte of the instruction is incremented to
obtain a page 00 address. The contents of this address indicate the page on
which the data used by the instruction is contained.

Instructions which can use this addressing mode are add with carry, logical
operands, subtract with borrow, compare memory with accumulator, load
accumulator with memory, and store accumulator in memory.

This form of addressing is useful when one of several values could be
used in a subroutine (program within a program). It is not practical to use
it in the Model 300 Computer Trainer because of the memory space restrictions
which are placed on the programmer.

Using the op code Tisting in Appendix A write a short program for each
addressing mode which moves some memory location into location 10. The
routine for zero page mode is given as an example.

OE Code Location Mnemonic Note
00 per [oad accumulator with data to be stored
FF 0 Data Data to be stored
85 02 STA Oper Store accumulator (zero page)
10 03 Data Location on page 00 to store data
4c 04 JMP Oper Jump to prevent further execution
04 05 Data Memory location to jump to
00 06 Data Page to jump to

/(7-<



INTERRUPTS

Introduction:
The use of interrupts is discussed.

Discussion:

nterrupts are used to literally "get the processor's attention" when
it is running a program. Ideally, an interrupt causes the processor to
temporarily stop executing a program and jump to a new routine. At the
completion of this routine, the processor returns to the original program
and continues execution. Interrupts are used mainly inconjunction with
1/0 devices (Input/Output). Each I/0 device of a large computer system
generates interrupts when it wants to input data to the processor and, in
zany cases, interrupts are generated when 1/0 devices are ready to accept
ata.

The 6502 has two external interrupts. These are a non-maskable or
unconditional interrupt and a maskable interrupt which is controlled by
D, of the Processor Status Register. The (NMI) line is controlled by the
Nﬁl switch on the Model 300. When it is to the left, the NMI line is not
activated. When it is moved to the right, the non-maskable interrupt is
activated. The NMI line is edge triggered so that the switch may be left
to the right without i11 effects during program execution.

When the NMI switch is activated, the existing program is stopped.

The program counter and Processor Status Register are pushed on to the

stack and the processor jumps to a new program specified by the NMI vector
located at FFFA and FFFB (7A and 7B on the Model 300). If one wishes to
completely save the original program, the accumulator and registers X and Y
should be stored on the stack immediately in the NMI program. At the end of
the interrupting routine, X, Y and the accumulator should be pulled

from the stack before the execution of the Return from Interrupt instruction
which will then completely restore the original program.

The maskable interrupt differs from NMI in that it can be disabled by
D, of the Processor Status Register and its vector is located at FFFE and
F?FF (7€ and 7F on the Model 300). The line associated with the maskable
interrupt is called IRQ (interrupt request) and is available for external use
at the left of the processor on the Model 300. Its use is discussed in the
next section.

NMI can be demonstrated. A simple program which increments memory
Tocation 00 each time the NMI switch is activated is outlined below. It is
actually two programs; the mainline routine and the interrupt routine. Be
sure to set both vectors when executing the program.

Mainline Program

1. Start at location 01.
2. Initialize stack pointer.
3. Jump to start of program.

Interrupting Routine

1. Increment memory location 00.
2. Return from interrupt.

/8 -A



1/0 PROGRAMMING

Introduction:
e I/0 capabilities of the Model 300 Computer Trainer are explored.

Discussion:

s mentioned in the last section, the Computer Trainer has the IRQ line
available for external input. This 1ine is pulled up via a 4.7K resistor.
Momentarily bringing this 1ine low inconjunction with Dy of the Processor
Status Register being low will cause an interrupt. ThiS line is ggg.edae
triggered so holding this 1ine low for more than approximately 10useconds
will cause multiple interrupts and will, most likely, cause the stack to
overwrite the program.

Another input can be provided on the Computer Trainer by removing the
Jjumper from pin 38 to ground (located directly above the processor). Pin 38
s set overflow which sets the overflow bit in the Processor Status Register
when high. For this reason, it should normally be Tow, but, it can be used
as a very simple one line input.

The Computer Trainer also has a one bit output latch. This latch is set
whenever a Tocation on page 02 is addressed and is reset whenever a location
on page 01 is addressed. It has both a high true output (to the left of the
output Tabed and a low true output (to the right). A high frequency
square wave can be obtained from this output by using the following program.

Op Code Location Mnemonic Note
AD 00 LDA Oper Accumulator loaded in absolute mode
00 01 Data so that page 02 can be addressed,
02 02 Data setting tte latch high

ADD NOPS HERE LATER (SEE TEXT)
4C 03 JMP Oper Dummy jump designed to balance time
06 04 Data
00 05 Data
AD 06 LDA Oper Accumulator loaded in absolute mode
00 07 Data so that page 01 can be addressed,
01 08 Data setting the latch low

ADD NOPS HERE LATER (SEE TEXT)
4c 09 JMP Oper Jump back to the begining of the
00 0A Data program
00 0B Data

This loop takes 14 machine cycles to execute. The Model 300 has a machine
cycle time of two to four microseconds so the output period will be 28 to 56usec.
or 20 to 40KHz . By measuring the output period with a scope or frequency
meter and dividing by 14, the exact cycle time can be found.

By adding 10 NOPs at the locations specified in the precedina program,
the Toop will require 54 cycles to execute, producing an output in the
audio range. The output latch can be connected directly to the auxilary or
Tuner input of a standard audio amplifier. Be careful to install the ground
connection before installing the signal connection.

More sophisticated timinﬁ]loo s can be used to generate specific audio
notes as outlined on the foTlowing page.

19-R



. Set the output latch high.

Load a memory location into Register X.

Decrement Register X until it is zero and then proceed.
Set the output latch low.

Repeat step 2.

Repeat step 3.

Jump to the begining of the program.

NOYO B W N
* 8 e e s ®

With this loop, the output frequency is determined by a specific
memory location. By placing this loop inside another timing loop, the
duration of the note or tone can be specified. This can then be used
intonjunction with a look-up table in memory to play music or with a random
number routine to generate "music."

17-8



OUTPUTING TO A TELETYPE

Introduction:
e basics of outputing via a 20ma current loop are discussed.

Discussion:

e standard computer terminal uses a one line serial communications
technique which is either a 20ma current loop or RS-232C specification. The
most common terminal, the ASR-33 Teletype, uses a 20ma current loop. The
Model 300 Computer Trainer's output latch can be easily interfaced to an
ASR-33 via the diagram below.

+5
|
14
| Ny 17
] - 7
HIGH TRuE ST G
OL,TpUI;S 220 Bgnprf_g TR

—ANVW—D 7 om Azie-T72=

The software for outputing a character on the teletype is very similar
to the music routines of the last experiment. The teletype communicates at
110 baud or 10 characters per second. Each character is made up of a
mark, eight data periods, and a double length mark so that there are
a total of 11 periods per character. Each period is 9090usec. long. The
marks are ones or current on conditions. The zeros or offs are called spaces.
The eight bit serial code transmitted between marks determines the character
which will be printed on the teletype. This code is called ASCII and is
Tisted in hextdecimal form on the 650X programming card.

To print an "A" on a teletype, for example, the software must output a mark,
then 0100 0001, then a two period mark with each period being 9090usec. long.
As with the music program, routines should be designed to use data from
memory so that words and sentences can be outputed.

20 -A



Comments on the Data Sheet

This data sheet describes the first five members of the MCS650X microprocessor
family. The data sheet is constructed to review first the basic "Common
Characteristics" - those features which, unless specifically stated otherwise,
are common to all of the MCS6501 - MCS6505 microprocessors. Subsequent to a
review of the family characteristics will be sections devoted to each member
of the group with specific features of each.

COMMON CHARACTERISTICS

@———  REGISTER SECTION CONTHOL SECTION ———3
RES 180 Sl
B { 1 1
- M
AN INGIEX = INTLRRUPT
L o LOGIC
AN - T 1
R
RV 1INV
RGBT F)
. 3 e - —— ————— RULY
A -
"] ® sl T Tiun |
. < 3k OINT =
3 "I REGISTER
> i5) B
Al ] ’
.5. IS TRLCTION
z VELODE
AN - :a -
AL e
- Sand
AR? g “T — —
AUIIESS g
bl J
il e ACCLMIULA TOR =1 1
= A — b1 coNTROL
-] % k<
s - 16401}
& o vyNy
AN —-— L "
= - RRIL]
16501}
AT - v Ml ot
Nt R
~ SIATLS CLOOA | - (LUK
3 4= WIGISTAN GENLEATOR INPUT
AL -t I
- (REE]
- DAIA ]
1) - e — | 9y our
A i (L2 i T ——— 000t
[ l-——-. W
el aJ it
PATA LS v, INSTRLCTION
MR - REGISTER
S ] L
k lt - 3 i
-
o = S NI
LGS Z i
ﬂ =il DATA
N MIT N - i s
L A LlLE
I <L U et (11l
- 00T

NOTE | CLOCK GENERATOR IS NOT INCTUDED ON MO 481

2. ADODRESSING CAPABILLTY AND CONTHOL OFTIONS VARY WiT)
EACH OF THE WCSS9X IRODUCTS

MCS6501 — MCS6505 Internal Architecture




[common cHARACTERISTICS |

INSTRUCTION SET — ALPHABETIC SEQUENCE

Add Mesnry L0 Accumulator with Carry 2L Deurewent Mumary by (ne PiA  Fush Accusnlator ou Stack
PANY" Marmiry with Accumdlatar o Decrement tndex X by One PHF Push Processer States va Stdck
Shilt tefr Ome B3It (Mesory or Accusulutor) ™Y Decryment Index ¥ by (ne PEA  Pull Ascueularor free Stack
7ir Pull Processnr Status from Stach

Prancl um Carry Clear EON  “Exclusive-se™ Mesors with Accusulator
Pranch on Carre 341 B Bolate Dee REt Lefe (Mesory of Accemslater)
Branch on Pesull fers W Inceesent Mepory by One ¥l Seturn from jntevrupt
Towt Mits in Memory wilh Accumul stor 1 Incrument Indow X by One TS Beturn from Sebroutine
Sranch v Fesuly Minus I Incewmunt Tndex ¥ ohy One
Sranch on Sesult noe dedd SHL Subtract Meory from Accusulator with Berrow
Rranch om Beauls Flus I lowp 1o MG locattm SEC Svr Carey Flag
Forse Ardud JSN Jump Lo Wew Lesatten Saving Beturn Address SED Sat Decimal Mode
fNramet on Ovecllow Clear 371 %et Interrupt Dissble Status
Nranch wn Overllow Lot LOA  Load Accusulutor wits Tlemery ETA Store Accwsulator in Mesory

1ox  twad index X with Memory STh  Store lmdes K In Mewory
Clear Carty ¥Flay 129 toad [ndex ¥ with Mewory ETY Store Isdex ¥ In Memury
Clmar Dnelral Wode 155 shift Ong Bit Wght (Memovy oF Accusaiater)
Clear Intwrrupt Uinable Bl 1AS  tranwfes Accusubater to Index X
Clesr Overllow Flag NI Mo Opetetion 1AY Tranater Accusulator te fndex ¥
Coapare Mreory sod Accumelator 154 Transler Stuck Polater te lodex ¥

Hemory A2 Index I MRA "R Mewmtiry with Accasulator 154 Tranater Indes X to Accewalator
Nesory end lsdex ¥ 155 Travafer fndex X to Btack Poiater
T¥A  Tramater indes ¥ o Accusulater

2 ADDRESSING MODES

ACCLMULATOR AUDRESSING - This form of addressing 1% represented with a one byte instructlon, fmplying an
operation on the accumulacor.

IMMEDIATE ADDHRESSING = in lmmediate addressing, the operand 1s contained in the second byte of the instructlon,
with no further senory addressing required.

ABSOLUTE ADDRESSING = In absolute addressing, the second byte of the instruction specifies the eight low order
bits of tho cifective address while the third byte specifles the eight high order bits. Thus, the
ahsolute addressing rode allows access to the entire 65% bytes of addressable menory.

ZERO PAGE ADDRESSING - The rero page instructions allow for shorter code and execution tines by only fetching
the secend hyte of the (nstruction and assuming a rero high sddress byte. Careful use of Lhe 2evo
page can result in significant lncrease in code efflciency.

INDEXED ZERO PALE ADDRESSING - (X, ¥ tndexing) = This form of addressing is used in conjunction with the index
replster and is referred to as “Zaro Fage, X" or “Zero Page, Y, The effective address Is caleculazed
by adding the second byte to the contents of the index replster, Since this is a form of "Zero Page"
addressing, the content of the second byte relerences a location in page zero. Additionally due to
the “zZero Page" addressing pature of this mode, no carry §s added to the high order 8 bits of menmory
and crossing of page boundaries does not occur,

INDEXED ABSOLUTE ADDRESSING - (X, ¥ indoexing) = This form of addressing 1% used In conjunction with X and Y
Index repister ond is referced to as “Absolute, X", and “Absolute, Y, The effective address is
formed by adding the contents of X or ¥ to the address contained in the second and third bytes of cthe
[nstruction, This mode allows the index register to contain the index or count value and the in-
structlon to contaln the base address, This type of indexing allows any location referencing and
the index to modify mulciple Lields resulting in reduced coding and execution time.

INPLIED ADDKESSING = 1n the loplied addressing node, the address containing the operand (s implicitly etated
in the operatton code of the instruction,

RELATIVE ADDGRESSING - Rolative addressing Is used only with branch instructions and establishes 8 destination
for the conditional branch.

The second byte of the instyuction becomes the operand which {4 an "0ffset" added to the contents of
the lover elght bits of the pregram counter wien the counter 1s set at the next instruction, The
cunge of the offset is -128 to +127 bytes from the next instruction,

INDEXED 1SDIRECT ADDEESSING = In indexed Indiroct addressing (referred to as (Indirect, X)), the second byte of
the Instruction is added to the contents of the X Index register, discarding the carry. The result
of this addition points to a memory location on page zero whose contents i% the low order elpht bita
of the elffective address. The next memory locatlon in page zevo containg the high order eight bits
of the effective address. Hoth memary locatlons specifying the high and low order bytes of the
effective address must be in page zero.

INDIRECT INDEXED ADDRESSING - In indirect indexed addressiog (referved to ns (Indirect),¥Y), the second byte
of the Lnstruction peints to o memory location in page zero. The contents of this memory location
1% added to the contents of the ¥ {ndex repister, the result being the lov order eight bits of the
effective address, The curry from this addition Is added Lo the contents of the next page zero
memory location, the result being the high order eight bits of the effective address.

ABSOLUTE INDIRECT = The second byte of the {natruction contains the low order eight bits of a memory location.
The high order eight bits of that menory location 15 contalned in the third byte of the fnstruction.
The contents of the fully specified memory Jocation is the low order byte of the effective address.
The next memory location contalns the high order byte of the effactive address vhich s loaded
into the sixteen bits of the program counter,




